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We apply the unbiased weak-coupling continuous time quantum Monte Carlo method to review the physics
of a single magnetic impurity coupled to s-wave superconducting leads described by the BCS reduced Hamil-
tonian. As a function of the superconducting gap �, we study the signature of the first-order transition between
the singlet and doublet �local-moment� states on various quantities. In particular, we concentrate on the
Josephson current with 0 to � phase shift, the crossing of the Andreev bound states in the single-particle
spectral function, as well as the local dynamical spin structure factor. Within dynamical mean-field theory, this
impurity problem provides a link to the periodic Anderson model �PAM� with superconducting conduction
electrons �BCS-PAM�. The first-order transition observed in the impurity model is reproduced in the BCS-PAM
and is signalized by the crossing of the low-energy excitations in the local density of states. The momentum
resolved single-particle spectral function in the singlet state reveals the coherent, Bloch-type, superposition of
Andreev bound states. In the doublet or local-moment phase the single-particle spectral function is character-
ized by incoherent quasiparticle excitations.
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I. INTRODUCTION

Magnetic degrees of freedom in superconducting environ-
ments have attracted considerable interest due to the under-
lying competing effects. Already a classical spin oriented
along the z axis1,2 embedded in a superconducting host gen-
erates a localized state within the superconducting gap. As a
function of the interaction strength this excitation crosses the
Fermi energy thereby triggering a first-order transition be-
tween a ground state with vanishing total electronic spin and
a ground state with nonzero total electronic spin.

For a quantum spin, the Kondo effect sets in. Being a
Fermi-surface instability, the opening of the superconducting
gap competes with Kondo screening and ultimately leads to a
local-moment regime. This transition is accompanied by a 0
to � phase shift in the Josephson current. In the local-
moment regime the � shift occurs since a Cooper pair tun-
neling through the junction necessarily accumulates a phase
�.3–6

The interest in the problem has been renewed in the last
decade by the rapid progress in nanotechnology which made
a direct experimental realization of quantum dots coupled to
superconducting leads feasible so that many experiments
have been designed to directly measure the 0 to � transition
of the Josephson current. Experiments using a carbon
nanotube7–9 but also InAs nanowires10 as a quantum dot
coupled to superconducting leads were able to observe the
sign change in the Josephson current by increasing the gate
voltage and thus manipulating the number of electrons on the
quantum dot. The effect of the changing electron number on
the behavior of such systems has been extensively
studied11–14 and the theoretical expectation of the collapse of
the Kondo effect if the superconducting gap � exceeds the
Kondo temperature TK has been confirmed by experiments of
Buitelaar et al.15

From the numerical point of view, a combination of algo-
rithmic development and computational power has allowed

for a more detailed study of the problem using the numerical
renormalization group �NRG�,16–19 quantum Monte Carlo
simulations20–22 as well as functional renormalization group
�fRG� calculations.23 Most numerical works present in the
literature only present either the study of the Josephson
current16,20,21,23 or the study of the spectral properties of the
Quantum dot.18 One of the goals of this paper is to use the
weak-coupling continuous time quantum Monte Carlo
�CTQMC� method24 to compute the Josephson current as
well as the spectral functions for the same parameter set in
order to present a comprehensive study of the 0 to � transi-
tion of a Josephson quantum dot. Our numerically exact data
clearly confirms the picture of a first-order phase transition
from a singlet phase linked to the 0-junction regime of the
Josephson current to a doublet phase corresponding to the
�-junction regime.

In addition to numerical efforts, many analytical approxi-
mations have been introduced to tackle different aspects of
the physics of the problem. The noncrossing approximation
has been used to show that Andreev bound states crossing
the Fermi energy are connected to the 0 to � transition of the
Josephson current.25 Perturbative methods as well as mean-
field theory have brought a quite complete understanding of
the phase diagram featuring the 0 and � phases as well as the
intermediate phases 0� and ��.26–28 Another method em-
ployed by several authors is the introduction of different ana-
lytically solvable effective models, which are valid in differ-
ent limits.18,27,28 These models are very useful to acquire an
intuitive understanding of the physics. We will present the
study of an effective Hamiltonian for the limit of a supercon-
ducting gap � much larger than the bandwidth to support the
interpretation of the CTQMC data.

Another motivation of this paper is to study within dy-
namical mean-field theory �DMFT� �Ref. 29� the periodic
Anderson model with an s-wave BCS-conduction band
�BCS-PAM�. Within this approximation, the BCS-PAM maps
onto the single impurity Anderson model with superconduct-
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ing baths supplemented with a self-consistency condition.
We will show that the physics of the impurity model can be
taken over to the lattice case. In particular, the first-order
transition observed in the impurity model is reproduced in
the BCS-PAM and is signalized by the crossing of the low-
energy excitations in the local density of states. The momen-
tum resolved single-particle spectral function in the singlet
phase reveals the coherent, Bloch-type, superposition of An-
dreev bound states. In the doublet or local-moment phase the
single-particle spectral function is characterized by incoher-
ent quasiparticle excitations. We provide an understanding of
this in terms of models of disorder.

The paper is organized as follows. After introducing the
model in Sec. II, we discuss in Sec. III an effective toy
model valid in the limit of a superconducting gap, �, much
larger than the bandwidth W. This simple toy model goes a
good way at understanding certain aspects of the underlying
physics. A brief outline of the employed CTQMC result in-
cluding the proof of Wick’s theorem for each configuration
in the Monte Carlo simulation will be presented in Sec. IV.
The results of the toy model are then compared to the results
of the CTQMC simulation, which are discussed in detail in
Sec. V. Section VI is dedicated to the study of the BCS-PAM
within DMFT. We include the Appendix featuring the proof
of a general determinant identity needed for the proof of
Wick’s theorem for every configuration in the CTQMC.

II. MODEL

The physics of a quantum dot coupled to two supercon-
ducting leads with N lattice sites �L=left ,R=right� via a hy-
bridization term is captured by the single impurity Anderson
model with the leads described by the BCS mean-field
Hamiltonian,

H̃ = �
�=L

R

H̃0,� + H̃d + H̃V �1�

with

H̃0,� = �
k,�

�kc̃k,�,�
† c̃k,�,� − �

k

��ei��c̃k,↑,�
† c̃−k,↓,�

† + H.c.� ,

H̃d = �
�

�dd̃�
† d̃� + U�d̃↑

†d̃↑ −
1

2
��d̃↓

†d̃↓ −
1

2
� ,

H̃V = −
V
�N

�
�=L

R

�
�,k

�c̃k,�,�
† d̃� + d̃�

† c̃k,�,�� . �2�

The operators c̃k,�,�
† are creation operators for electrons with

a z component of the spin � and momentum k in lead �, d̃�
†

is a creation operator of an electron with a z component of
the spin � on the quantum dot. �k=��k�−	=−2t cos�k�−	 is
the dispersion relation for the electrons in the leads, where
we assume that the dispersion is independent of the lead
index � and �d=�d−	 is the position of the dot level.
Throughout this paper, we will express all quantities in units
of t=1. The superconducting order parameter has a modulus

� and a phase ��. The parameter V characterizes the strength
of the hybridization and U corresponds to the Coulomb
blockade.

Since the Hamiltonian does not conserve the electron
number as a consequence of the BCS term, we use the stan-
dard trick of rewriting the Hamiltonian in terms of creation
and annihilation operators of quasiparticles, which for spin
up are identical to the electrons but correspond to holes in
the spin-down sector. This can also be expressed as a canoni-
cal transformation,

d̃↑
† → d↑

†, d̃↓
† → d↓, c̃k,↑,�

† → ck,↑,�
† , c̃−k,↓,�

† → ck,↓,�. �3�

Using the new operators, the Hamiltonian can be written
in a Nambu notation,

H = H0 + HU = �
k,�

ck,�
† E��k�ck,� + d†�dd

−
V
�N

�
k,�

�ck,�
† �zd + d†�zck,�� + HU �4�

with HU=−U�d↑
†d↑− 1

2 ��d↓
†d↓− 1

2 �, the Nambu spinors

d = �d↑

d↓
�, ck,� = �ck,↑,�

ck,↓,�
� , �5�

the matrices

E��k� = � �k − �ei��

− �e−i�� − �k
�, �d = ��d 0

0 − �d
� , �6�

and the Pauli matrix

�z = �1 0

0 − 1
� . �7�

For practical reasons, we use the following definition for
the single-particle Green’s function throughout Secs. II–V:

Gdd
����i
m� = �

0

�

d� exp�i
m���Td�
†���d��	 . �8�

With this definition, the resolvent operator G0�i
m�=
�−i
m1−H0

T�−1 can be used to obtain the Green’s function of
the noninteracting system,

Gdd
0 �i
n�−1 = �− i
n1 − �d� +

V2

N
�
�,k

�z
i
n1 + E�
T�k��−1�z.

�9�

III. EFFECTIVE HAMILTONIAN IN THE LIMIT
� ÕW\�

To gain a deeper understanding of the physics on the
quantum dot, it is useful to search for analytically solvable
toy models. We will study an effective model, which repro-
duces the physics of Hamiltonian �1� in the limit � /W→,
where W is the bandwidth. To derive the effective model, we
look at the limit �→ of the Green’s function in Eq. �9�.
The superconducting order parameter � appears only in the
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matrix E��k�, thus we examine the behavior of this matrix
for large values of �. This can easily be done by diagonal-
izing E��k� for ��=0,

E��k� = U�
−1�− ��2 + �k

2 0

0 ��2 + �k
2�U�. �10�

Let us first look at the limit �→ of the transformation
matrix U�, which for brevity is not a unitary matrix,

U� =�−
�k − ��2 + �k

2

�
1

−
�k + ��2 + �k

2

�
1⇒ U = � 1 1

− 1 1
� . �11�

The diagonal matrix in Eq. �10� can be considered in a simi-
lar manner and we obtain for lim

�→

E��k�=E,

E = U
−1�− � 0

0 �
�U = � 0 − �

− � 0
� . �12�

Using this result, for large values of � the sum over k and �
in Eq. �9� can be carried out yielding

Gdd
0,�i
n�−1 = �− i
n1 − �d� + 2V2�z�i
n1 + E�−1�z.

�13�

This is exactly the free Green’s function obtained from a
Hamiltonian of the form

Heff = − �2V�c†�zd + d†�zc� + c†Ec + d†�dd + HU,

�14�

where Heff describes a system consisting of one bath site c
connected by a hybridization term to the correlated quantum
dot d. The dispersion of the bath has completely vanished, as
the superconducting band gap becomes much larger than the
bandwidth.

We chose a basis of the 16 dimensional Hilbert space and
write the Hamiltonian as a matrix, which subsequently can
be diagonalized. As we have restricted the parameter space
for the Monte Carlo simulations to �d=0 and 	=0 in the
original Hamiltonian of Eq. �1�, we will use the same param-
eters for the exact diagonalization results.

Note that the effective Hamiltonian in the limit � /W is
not unique. In the case of real �, the Green’s function in Eq.
�9� for N=1, 	=−2t, and �d=	 reduces exactly to Eq. �13�,
as EL=ER=E. This case corresponds to the effective
Hamiltonian in the zero bandwidth limit studied by Vecino
et al.27

A. Ground state of the effective model

The ground state of the system 
Eq. �14�� can be deter-
mined by diagonalizing the Hamiltonian Heff. As depicted in
Fig. 1, the energy levels cross at a critical value of U=Uc and
a similar behavior can be observed by varying � with a
corresponding critical value �c. For U�Uc and ���c, the
ground state is given by ��s	=−���↑↓ ,0	− �0, ↑↓	�
−���↑ ,↓	+ �↓ ,↑	�−���↓ ,↓	+ �↑ ,↑	�, with the notation

c�
† �0,0	= �� ,0	 and d�

† �0,0	= �0,�	. Note that we are using
the unphysical basis introduced in Eq. �3�. To interpret this
ground state it is better to return to the physical basis by
inverting the canonical transformation in Eq. �3� and trans-

forming the vacuum state �0,0	→ �↓̃ , ↓̃	. The ground state
can then be rewritten in the physical basis as

��s	 = ���↓̃ , ↑̃	 − �↑̃ , ↓̃	� + ���0̃, ↑̃ ↓̃	 + �↑̃ ↓̃ , 0̃	�

+ ���0̃, 0̃	 + �↑̃ ↓̃ , ↑̃ ↓̃	� . �15�

This state is clearly a singlet state, corresponding to a
Kondo singlet between the quantum dot and the bath with
the dominant weight �. The states representing a pairing on
the quantum dot or in the bath have the suppressed weights �
and � for small values of � but grow more important if � is
increased as is shown in Fig. 2.

At U�Uc, the ground state changes and we get the
twofold-degenerate ground states ��d,↑	=a��↑↓ ,↑	− �↑↓ ,↓	�
+b��↑ , ↑↓	+ �↓ , ↑↓	� and ��d,↓	=a��0,↑	− �0,↓	�+b��↓ ,0	
+ �↑ ,0	�, rewritten in the physical basis,

��d,↑	 = a��↑̃ , 0̃	 − �↑̃ ,↑↓˜	� + b��0̃, ↑̃	 + �↑↓˜, ↑̃	� ,

��d,↓	 = a��↓̃ , 0̃	 − �↓̃ ,↑↓˜	� + b��0̃, ↓̃	 + �↑↓˜, ↓̃	� . �16�

This twofold-degenerate ground state has a z component of
the total spin �1 /2 and hence corresponds to a local mo-
ment.

B. Phase diagram

To further illustrate the phase transition between the sin-
glet state ��s	 and the doublet states ��d,↑↓	, the double occu-

pancy �d̃↑
†d̃↑d̃↓

†d̃↓	 of the quantum dot in the effective model
is shown in Fig. 3. At low temperature a very sharp drop of
the double occupancy on the phase boundary can be ob-
served, which evolves to a jump at T=0. Here the larger
values of the double occupancy are connected to the singlet

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

E

U

Running of eigenenergies

ψd
ψd
ψs

FIG. 1. �Color online� Eigenenergies of the effective Hamil-
tonian �14� for varying U. The fixed parameters are given by V
=0.5 and �=1. The crossing of the two lowest levels is clearly seen
at U�1.7. The ground state for U�1.7 is a singlet state. For larger
values of U, the twofold-degenerate doublet state becomes energeti-
cally more favorable.
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phase while the lower values belong to the doublet phase,
where single occupancy is favored. This can be understood
by studying the expectation value of the double occupancy in
the ground state. In the singlet phase, we obtain

��s�d̃↑
†d̃↑d̃↓

†d̃↓��s	 = ���2 + ���2 �17�

and for the doublet phase,

��d,↑↓�d̃↑
†d̃↑d̃↓

†d̃↓��d,↑↓	 = �a�2. �18�

From the behavior of the weights �, �, and a shown in Fig.
2 it is clear that the double occupancy increases with � in the
singlet phase and decreases in the doublet phase. Note that
many of the results presented in this paper can be observed
either at fixed U or � as can be conjectured from Fig. 3.

C. Proximity effect

To gain further insight in the sign change in the local pair

correlations �d̃↑
†d̃↓

†	,16,30,31 we calculate the ground-state ex-
pectation value of the local pair correlations in the effective
model �14�. For the singlet phase, we obtain

��s�d̃↑
†d̃↓

†��s	 = ��s����↑̃ ↓̃ , ↑̃ ↓̃	 + ��↑̃ ↓̃ , 0̃	� = 2 Re����� � 0.

�19�

Clearly, only terms describing the pairing on the quantum dot
contribute to the pair correlations, whereas the Kondo singlet
of electrons on the quantum dot and in the bath does not.
From Fig. 2, it is obvious that the resulting pairing correla-
tion is positive and increases with �. This illustrates the
proximity effect, as a pair field in the bath induces a pair
field on the quantum dot.

On the other hand, in the doublet phase, we obtain

��d,↓�d̃↑
†d̃↓

†��d,↓	 = ��d,↓�a�↓̃ ,↑↓˜	 = − �a�2 � 0. �20�

As in the singlet phase, only the states corresponding to a
pairing on the quantum dot contribute to the pair correla-
tions. The local-moment part of the ground state does not
generate pair correlations. As the weight a in the doublet-
phase ground state is positive and decreases with � �see Fig.
2�, the local pair correlations have a negative sign in contrast
to the positive sign in the singlet phase and decrease with �.

D. Spectral function

Using the Lehmann representation, the spectral function
A↑↑�
� of the effective model is easily calculated. It is de-
fined by

A↑↑�
� =
�

Z
�
n,m

Mnm�e−�Em + e−�En���
 + En − Em� �21�

with the matrix elements Mnm= ��n�d̃↑
†�m	�2. The spectral

function is shown in Fig. 4. Comparing this plot to the nu-
merical solution of the full model as depicted in Fig. 14, we
observe that the simple model already shows the important
feature of an excitation at the position 
=0 at the critical
value of �. Even though for very small values of �, the
Kondo resonance at 
=0 cannot be seen in the simple
model, we see a precursor of the Kondo resonance as a pole
of the Green’s function, which develops into a resonance if
we increase the number of sites in the bath.32

A careful analysis reveals that the low-frequency signa-
ture of the spectral function reflects the excitation between
the two lowest lying states of the spectrum. These states are
the ground states of the singlet and the doublet phases and
therefore, the position 
 of the excitation marks precisely the
energy difference of the two ground states. At the critical
value of �=1.412, the level crossing occurs and leads to a
vanishing energy difference of the two ground states, mean-
ing that the excitation between the two states lies now pre-
cisely at 
=0.

0
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0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4
∆

Running of ground state weights

b
β
γ
α
a

FIG. 2. �Color online� For ��1.412 the ground state is the
singlet state from Eq. �15�. If � is increased, the weight � of the

single occupied states �↑̃ , ↓̃	 and �↓̃ , ↑̃	 decreases in favor of the
states with a double occupied quantum dot, corresponding to the
weights � and �. At �=1.412 the ground state changes to the
twofold-degenerate doublet state given in Eq. �16� and the weight
of the states with a single occupied quantum dot b increases with �.
The parameters in this plot are V=0.5 and U=1.0.

Double occupancy
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FIG. 3. �Color online� Double occupancy �d̃↑
†d̃↑d̃↓

†d̃↓	 of the
quantum dot in the effective model at �=200 and V=0.5. This plot
can be understood as a phase diagram of the effective model, as the
phase boundary is accompanied by a sharp decay of the double
occupancy.
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E. Dynamical spin structure

Like the spectral function, the dynamical spin structure
factor S�
� can be calculated using the Lehmann representa-
tion,

S�
� =
�

Z
�
n,m

e−�En��n�S̃+�m	�2��
 + En − Em� . �22�

In the Monte Carlo simulation, a numerically more stable
quantity is obtained by replacing S+ by Sz in the above equa-
tion. This quantity is completely equivalent to S�
�, as we
only make use of the SU�2� symmetry of the problem and is
therefore used in the following.

In the representation 
Eq. �22�� of S�
�, it is clear that the
dynamical spin structure factor will show excitations at fre-
quencies corresponding to the energy needed to flip the spin
on the quantum dot. Therefore, the dynamical spin structure
factor is very well suited to determine whether the system is
in the singlet or in the doublet regime. In Fig. 5 the phase
transition from the singlet phase to the doublet phase is re-
flected by the fact that in the singlet phase, a gapped excita-
tion can be observed, whereas in the doublet phase, a peak at

=0 emerges, which corresponds to a local magnetic mo-
ment.

F. Dynamical charge structure

The dynamical charge structure factor N�
� can be de-
fined by the Lehman representation,

N�
� = −
�

Z
�
n,m

��n�ñ − �n,m�m	�2e−�Em��
 + En − Em� .

�23�

As for the other spectral functions, the charge structure
factor N�
� shown in Fig. 6 exhibits a sharp change in its

behavior at the phase transition for the critical value of the
superconducting gap �. We observe that the charge structure
shows a finite gap for all values of � and that for large values
of �, the gap increases in a slightly nonlinear manner.

A more detailed study of the matrix elements contributing
to the charge structure factor reveals that because of correla-
tion we have completely different excitations than for the
spectral function. In fact, the most prominent excitations are
excitations from the respective ground states in the two dif-
ferent phases to higher energy states with structure similar to
that of the ground states.

IV. CTQMC

A. Basic outline of the algorithm

For the numerically exact solution of the BCS-Anderson
model, we used the weak-coupling CTQMC method,24

which is based on a perturbation expansion around the limit
of U=0. Following the presentation of the CTQMC algo-
rithm in Ref. 33, we will shortly outline the basic principles
of the method.

As pointed out in Refs. 24 and 33 the interacting Hamil-
tonian HU in Eq. �4� can up to a constant be rewritten as

Spectral function A↑↑(ω)

0 0.5 1 1.5 2 2.5 3
∆

-3
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0
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20

25

FIG. 4. �Color online� Spectral function A↑↑�
� of the effective
model for different values of � at �=200, U=1, and V=0.5. The �
peaks have been broadened by a Gaussian function of width �
=0.04 for better visibility.

Dynamical spin structure
S(ω)
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FIG. 5. �Color online� Dynamical spin structure factor S�
� of
the effective model at �=200. The phase transition from the singlet
phase to the doublet phase for U=1 and V=0.5 occurs at �
�1.412. At this point a transition from a gapped excitation to a
peak at 
=0 corresponding to a local magnetic moment in the
doublet phase is observed. To visualize the � functions, a Gaussian
broadening of width �=0.05 has been applied.

Dynamical charge structure
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FIG. 6. �Color online� Dynamical charge structure factor N�
�
of the effective model at �=200. We have used the same parameters
as for Fig. 4.

WEAK-COUPLING CONTINUOUS-TIME QUANTUM MONTE… PHYSICAL REVIEW B 81, 024509 �2010�

024509-5



HU = −
U

2 �
s=�1

�d↑
†d↑ − �↑

s��d↓
†d↓ − �↓

s� �24�

introducing the parameters ��
s to minimize the sign problem.

For the present case, a choice of �↑
s =�↓

s = 1
2 +s� with �= 1

2
+0+ was found to completely eliminate the sign problem at
half filling, even after the complex phase factors exp�i��� in
the Hamiltonian were introduced.

Using perturbation theory, the partition function Z of the
full Hamiltonian �4� can be written as

Z

Z0
= �Te−�0

�d�HU���	0 = �
n=0

 �U

2
�n�

0

�

d�1 ¯ �
0

�n−1

d�n �
s1,. . .,sn

� �T
n̂↑��1� − �↑
s1� ¯ 
n̂↓��n� − �↓

sn�	0 �25�

with the number operators n̂�=d�
†d� and the thermal expec-

tation value � • 	0= 1
Z0

Tr
e−�H0•�. As H0 is a noninteracting
Hamiltonian, Wick’s theorem holds and the expectation
value �T
n̂↑��1�−�↑

1�¯ 
n̂↓��n�−�↑
n�	0 can be cast in a deter-

minant of a matrix MCn
of size 2n�2n, where Cn is a con-

figuration of vertices ��i ,si�. In contrast to the formulation
for the Hubbard model given in Ref. 33, we do not need to
include an index for the lattice site as we only have one
correlated site, the impurity. The matrix MCn

is not block
diagonal for the two spin sectors in the case ��0, so we
cannot factor the determinant in two determinants of n�n
matrices. Finally, the partition function of the model is given
by

Z

Z0
= �

Cn

�U

2
�n

det MCn
, �26�

where the sum runs over all possible configurations Cn of
vertices as in Ref. 33. The matrix MCn

is defined by

MCn
= �Gdd

0 ��1,�1� − �1 ¯ Gdd
0 ��n,�1�

] � ]

Gdd
0 ��1,�n� ¯ Gdd

0 ��n,�n� − �n
 �27�

using the 2�2 Green’s function matrices Gdd
0 �� ,���

= �
�Td↑

†���d↑����	0 �Td↓
†���d↑����	0

�Td↑
†���d↓����	0 �Td↓

†���d↓����	0
� and with �i= �

�↑
i 0

0 �↓
i �.

A similar reasoning yields an expression for the thermal
expectation value �O���	= 1

ZTr
e−�HO���� of the full model,

�O���	 =

�
Cn

�U

2
�n

det MCn
��O���		Cn

�
Cn

�U

2
�n

det MCn

. �28�

Here ��O���		Cn
is the contribution of the configuration Cn to

the observable O���, which is given by

��O���		Cn
=

�T�n̂↑��1� − �↑
1� ¯ �n̂↓��n� − �↓

n�O���	0

�T�n̂↑��1� − �↑
1� ¯ �n̂↓��n� − �↓

n�	0

.

�29�

Both the numerator and the denominator of the above Eq.
�29� can be written as determinants of matrices using Wick’s
theorem. Equation �28� is the central relation of the CTQMC
algorithm because starting from this equation, the
Metropolis-Hastings algorithm can be employed to generate
a Markov chain of configurations Cn. At this point, we have
to interpret � U

2 �ndet MCn
as the statistical weight of a given

configuration Cn that, in general, is impossible, as det MCn
is a complex number. Therefore, we have to replace
� U

2 �ndet MCn
by its modulus and account for the phase in the

measurement of the observables. Fortunately, in the present
case, the statistical weights are always real and nonnegative
so that we can simply calculate the contribution to the ob-
servable O��� for a given configuration Cn in the Markov
chain as ��O���		Cn

.

B. Wick’s theorem for each configuration

For the measurement of higher Green’s functions of the
form �T�1

†�1�¯�m
† �m�	, where �i

† stands for d�i

† ��i,meas� or
cki,�i,�i

† ��i,meas� depending on the quantity of interest, the cal-
culation of the contribution ��T�1

†�1�¯�m
† �m�		Cn

is tedious
and time consuming. Luckily for every configuration Cn a
relation similar to Wick’s theorem can be found, which
greatly simplifies the calculation of higher Green’s functions.
It is closely connected to the determinant identity 
Eq. �A2��
proven in the Appendix. The application of the ordinary
Wick’s theorem to the denominator and the numerator of
Eq. �29� yields

��T�1
†�1� ¯ �m

† �m�		Cn
=

det BCn

det MCn

, �30�

where we have defined the matrix BCn
�C�2n+m���2n+m� as

BCn
=�

�T�1
†d��1�	0 ¯ �T�m

† d��1�	0

MCn
] � ]

�T�1
†d��n�	0 ¯ �T�m

† d��n�	0

�Td†��1��1�	0 ¯ �Td†��n��1�	0 �T�1
†�1�	0 ¯ �T�m

† �1�	0

] � ] ] � ]

�Td†��1��m�	0 ¯ �Td†��n��m�	0 �T�1
†�m�	0 ¯ �T�m

† �m�	0

 . �31�
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Defining the matrices BCn

ij �C�2n+1���2n+1�, we can make use
of the determinant identity 
Eq. �A2��

BCn

ij =�
�T� j

†d��1�	0

MCn
]

�T� j
†d��n�	0

�Td†��1��i�	0 ¯ �Td†��n��i�	0 �T� j
†�i�	0

 ,

�32�

yielding

det BCn

det MCn

=
1

�det MCn
�ndet�det BCn

11
¯ det BCn

1m

] � ]

det BCn

m1
¯ det BCn

mm .

�33�

From Eq. �29� it is obvious that det BCn

ij /det MCn
is identical

to the contribution of the configuration Cn to the one-particle
Green’s function �T� j

†�i�	. Hence, Wick’s theorem holds for
every configuration Cn and is given by

��T�1
†�1� ¯ �m

† �m�		Cn

= det���T�1
†�1�		Cn

¯ ��T�m
† �1�		Cn

] � ]

��T�1
†�m�		Cn

¯ ��T�m
† �m�		Cn

 . �34�

This relation is particularly useful in a simulation measuring
multiple physical observables as measurements of single-
particle Green’s functions can be reused in an economic way.

V. NUMERICAL RESULTS

In this section, we present the results obtained by
CTQMC simulations for the model �1�. We restrict ourselves
to the case of half filling, �d=0 and 	=0. In the first part of
this section, we will discuss the results for static quantities
including the Josephson current, double occupancy, and pair
correlations on the quantum dot. We then proceed to dynami-
cal quantities such as the single-particle spectral function and
the dynamical spin structure factor.

A. Josephson current

The Josephson current flowing through the Quantum dot
can be calculated directly within the CTQMC method, as it is
given by an equal-time Green’s function,

�j�	 = i
V
�N

�
k,�

�c̃k,�,�
† d̃� − d̃�

† c̃k,�,�	 . �35�

We show here our results for the Josephson current at an
inverse temperature of �=50 as a function of the supercon-
ducting gap �. For small values of �, we observe a sinu-
soidal form of the Josephson current as a function of the
phase difference � with increasing amplitude, as � increases
�see Fig. 7�.

This parameter regime is known as the 0-junction regime
because the Josephson current Ij���= ��

�� has a zero with
positive slope at �=0, corresponding to a minimum in the
grand potential � at �=0 �see Fig. 5 in Ref. 23�.

If the value of � is further increased, the behavior of the
Josephson current changes, as in the region ��0.15¯0.35
the Josephson current shows a zero between �=0 and �
=�. �see Fig. 8�. This leads to a minimum in the grand po-
tential at � and the parameter regime is called 0� or ��
regime depending on which minimum of the grand potential
is the global one.34 The behavior of the Josephson current is
in accordance with the behavior of the double occupancy
seen in Fig. 12, as in the same parameter region, where we
observe the 0� to �� transition, the drop of the double occu-
pancy as a function of � can be observed, which is linked to
the change in the curvature of the current-phase relation of
the Josephson current.

For larger values of �, the sign of the Josephson current
changes and the grand potential shows now a single mini-
mum at �=�, this regime is therefore called the � regime.
�see Fig. 9�.

The picture for the behavior of the grand potential as a
function of � that we get from the current-phase relation of
the Josephson current agrees very nicely with the results pre-
sented by Benjamin et al.35

The current-phase relations for the different phases pre-
sented here were also extensively studied by Karrasch et al.23

using the fRG and NRG methods, Choi et al.16 using the
NRG method, as well as by Siano and Egger20–22 using the
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FIG. 7. �Color online� Josephson current in the 0 junction
regime.
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FIG. 8. �Color online� Josephson current in the 0� and �� junc-
tion regimes.
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Hirsch-Fye QMC method. Even though the numerical exact-
ness of certain results has been debated, the results of all
numerical works show very good qualitative agreement and
are confirmed by the present results.

In the literature,22,23 the temperature dependence of the
current-phase relation of the Josephson current has been dis-
cussed. We show CTQMC results in Fig. 10 which look very
similar to the Siano and Egger22 result. As CTQMC is nu-
merically exact, our result suggests that the crossing of all
curves in one single point23 at Ij =0 found in the approximate
finite temperature NRG is not universal.

B. Double occupancy

We learned from the toy model described in Sec. III that
the system exhibits a phase transition from the singlet phase
to the doublet phase as U is increased. This picture is con-
sistent with the NRG results of Bauer et al.18 The phase
transition can be observed in the double occupancy �n̂↑n̂↓	 of
the quantum dot, which is proportional to ��

�U , where � is the
grand potential. At T=0, a sharp step function of the double
occupancy is expected. While the T=0 regime is not directly
accessible to quantum Monte Carlo calculations, we calcu-
lated the double occupancy for different temperatures using
the CTQMC method. The results are shown in Fig. 11. From
the data, it is obvious that with decreasing temperature the
curves converge to the step function of the limit T=0, which

is a clear sign for a first-order phase transition, reflecting a
level crossing of the two ground states. This is in complete
accordance with the results for the toy model.

It is interesting to correlate the Josephson current as a
function of the phase difference �=�L−�R for various val-
ues of � �see Sec. V A�, with the double occupancy on the
dot. As depicted in Fig. 12, for very small values of � as well
as for ��0.4, we see that the double occupancy is a constant
function of �. This corresponds to a current-phase relation
for the Josephson current fixed in either the �- or the
0-junction regime. For intermediate values of �, we observe
a far more interesting behavior of the double occupancy: At
a certain value of �, the double occupancy drops to a smaller
value. This drop is of course smeared out by the finite tem-
perature but can be understood as a way to drive the phase
transition from the 0- to the �-junction regime by the phase
difference �.

C. Pair correlation

In agreement with the NRG result of Choi et al.16 as well
as with the mean-field results by Salkola et al.,30 we obtain
the local pair correlation on the quantum dot shown in Fig.
13. For small �, the local pair correlation increases because
of the proximity effect, as an increasing magnitude of the
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FIG. 9. �Color online� Josephson current in the � junction
regime.
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FIG. 10. �Color online� Josephson current for different tempera-
tures 1 /�. The current-phase relations do not intersect at one single
point as suggested by the NRG results of Karrasch et al. �Ref. 23�.
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pair field � in the leads induces a growing pair correlation on
the quantum dot. The sharp sign change at the critical value
of � observed at zero temperature is smeared out at finite
temperatures but the qualitative behavior is exactly the same
as for the effective model discussed in Sec. III C. We there-
fore conclude that the sign change in the pair correlation is
due to residual pairing on the quantum dot in the doublet
phase which decreases with �.

The same qualitative behavior of the local pair correlation
is also observed, if U is changed instead of � as discussed in
Refs. 18 and 30. The sign change in the local pair correlation
�d is traditionally expressed as a �-phase shift in �d.

D. Spectral function

All quantities studied so far suggest that a first-order
phase transition occurs when we tune the system from the
0-junction to the �-junction regime. This can be confirmed
by studying dynamical quantities such as the spectral func-
tion.

In Fig. 14 we show the spectral function A�
� of the
quantum dot as a function of �. The data have been calcu-
lated from the CTQMC data for the Green’s function Gdd

↑↑���
using stochastic analytic continuation.36,37 This method
works especially well for the low-energy spectrum and sharp
excitations while the high-energy spectrum and excitation
continua are more difficult to resolve. Inside the gap, the
formation of Andreev bound states can be seen very well.

In the region of ��0 we see the Kondo resonance. As a
function of growing values of � and as a consequence of the
opening of the quasiparticle gap at the Fermi level, the
Kondo resonance evolves to the Andreev bound state. Note
that at the mean-field level, the Kondo resonance merely
corresponds to a virtual bound state. Opening a quasiparticle
gap at the Fermi level drives the lifetime of this virtual
bound state to infinity. In the parameter region which corre-
sponds to the 0-junction regime of the Josephson current
���0¯0.1�, we observe Andreev bound states with excita-
tion energies approaching 
=0. This corresponds to the
crossing point in Fig. 14 and has also been observed by
Bauer et al. for fixed � and increasing U in Ref. 18.

The comparison of the quantum Monte Carlo data shown
in Fig. 14 with the result obtained from the effective model
discussed in Sec. III D is particularly insightful. The spectral
signature is very similar except for the lack of the Kondo
resonance due to the finite size of the effective model. In the
effective model, the Andreev bound-state excitation corre-
sponds to the energy difference between the ground states of
the singlet and the doublet phases. The position � at which
the Andreev bound states cross at 
=0 has been identified as
a clear sign for the crossing of the ground states of the singlet
and doublet phases. Hence, we interpret the crossing of the
Andreev bound states in the CTQMC data as a very strong
sign for a level crossing and hence a first-order phase tran-
sition from the singlet to the doublet phases in the full
model.

E. Dynamical spin structure factor

In addition to the spectral function, the dynamical spin
structure factor S�
� defined in Eq. �22� provides a way of
characterizing the phases of the system. For �=0, we clearly
see a suppressed spectral weight at 
=0 and a peak which
corresponds to the characteristic energy scale of the Kondo
temperature TK. From the peak position, we obtain a rough
estimate for the Kondo temperature of TK�0.06.

From ��0.05 onward, spectral weight is accumulated at

=0 ultimately forming a pronounced sharp local-moment
peak for large values of �. As the Kondo temperature is a
measure for the energy required to break the Kondo singlet,
we expect the Kondo effect to break down at a value of �
�TK. This is indeed observed in Fig. 15.

The signature of the breakdown of the Kondo resonance
also shows up in the spectral function plotted in Fig. 14.
Since the Kondo resonance stems from a screening of the
magnetic moment by conduction electrons in an energy win-
dow TK around the Fermi level, the opening of a single-
particle gap of order TK destroys the Kondo resonance giving
way to an Andreev bound state.
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FIG. 13. �Color online� Local pair correlation �d= �d̃↑
†d̃↓

†	 as a
function of �. We observe the same behavior as Choi et al. �Ref.
16� which is also in very good agreement with the pair correlation
expected for the effective model discussed in Sec. III C.
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FIG. 14. �Color online� Spectral function A�
� as a function of
� for the parameters �=100, U=1.0, and V=0.5 at half filling and
zero phase difference between the two superconductors.
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The breakdown of the Kondo resonance is accompanied
by a change in the curvature in the current-phase relation of
the Josephson current which is a precursor for the transition
to the 0� phase �see the curves for �=0.05 and 0.08 in Fig.
7�. We also observe that after the transition from the �� to
the � regime has occurred �see the current-phase relation of
the Josephson current of Fig. 8� the peak at finite 
 vanishes
and all the spectral weight is accumulated in the very sharp
local-moment peak at 
=0.

F. Charge gap

From the dynamical charge structure factor, we can deter-
mine the gap �c to local charge fluctuations on the dot with
two different methods.38 One way to extract the charge gap is
to read off the peak position of the lowest lying excitation in
the dynamical charge structure factor obtained from the
charge correlation function Cc���= �ñ���ñ	− �ñ	�ñ	 via sto-
chastic analytic continuation. The other way of extracting the
charge gap from Cc��� is based on the fact that the charge
structure factor N�
� is linked to Cc��� via

Cc��� � �
−



d
e−�
N�
� . �36�

If N�
� is sharply peaked around a certain value 
p, we can
approximate N�
� by N�
����
−
p�. This corresponds to
Cc����e−�
p. Therefore, a least-squares fit of an exponential

function e−�
p to Cc��� in a region where only one single
mode dominates can reveal the frequency 
p at which N�
�
is peaked. The applicability of the method can be seen in the
half logarithmic plot of Cc���, where a sharply peaked charge
structure factor N�
� is reflected by a region in which Cc���
can be well approximated by a straight line.

The data obtained using these methods are shown in Fig.
16. In the context of the effective model discussed in Sec.
III F, we observe that the behavior of the charge gap of the
full model clearly differs from that of the effective model.
Especially, we do not see any signature of the phase transi-
tion in the behavior of the charge gap.

The charge gap opens approximately linearly with �. It is
very hard to extract the charge gap from the numerical data
at small �, therefore we can only extrapolate to �=0. Here,
it appears that we have a finite charge gap even in the ab-
sence of superconductivity. The fact that the local charge
fluctuations remain gaped confirms the picture that the 0 to �
transition occurs only in the spin sector.

VI. DMFT

A. Periodic Anderson model with BCS conduction band

In the previous sections, we have studied the first-order
phase transition in the impurity model �1�. As the DMFT
provides a link between impurity models and lattice models,
we can ask the question if the singlet to doublet-phase tran-
sition observed in the impurity model is also realized in a
corresponding lattice model.

An appropriate lattice model will of course include a U�1�
symmetry-breaking term like the impurity model �1� does
and in fact in the framework of the DMFT, a periodic Ander-
son model extended by the BCS mean-field Hamiltonian
�BCS-PAM� for the conduction-band electrons corresponds
to the impurity model presented in the previous sections.39

The Hamiltonian of the BCS-PAM is given by
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FIG. 15. �Color online� Dynamical spin structure factor S�
� as
a function of � for the parameters �=100, U=1.0, and V=0.5 at
half filling and zero phase difference between the two supercon-
ductors. For �=0 we can roughly estimate the Kondo temperature
TK�0.06 from the peak position of S�
�.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

∆
c

∆

Chargegap as a function of ∆

∆c from Cc(τ)
∆c from N(ω)

∆c = 0.8038∆ + 0.0714

FIG. 16. �Color online� Charge gap �c as a function of �. We
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H = Hc + Hf + HV �37�

with

Hc = �
k,�

��k�c̃k,�
† c̃k,� − ��

k

�c̃k,↑
† c̃−k↓

† + H.c.� , �38�

Hf = �
k,�

� f f̃ k,�
† f̃ k,� + U�

if

�ñif,↑ −
1

2
��ñif,↓ −

1

2
� , �39�

HV = − V�
k,�

�c̃k,�
† f̃ k,� + H.c.� . �40�

We have considered a square lattice with hopping matrix
element t between the conduction electrons such that

��k� = − 2t
cos�kax� + cos�kay�� . �41�

Note that the impurity model �1� has a large range of
applications in the DMFT ranging from the attractive Hub-
bard model with U�1� symmetry broken solutions studied in
Refs. 40 and 41 to the BCS-PAM, which is considered here.

The treatment of this model within DMFT involves the
same steps as for the impurity model �1�, introducing a
particle-hole transformation for the spin-down operators. The
Hamiltonian can then be cast in the form H=H0+HU with

H0 = �
k

ck
†E�k�ck − V�

k

�ck
†�zfk + H.c.� + �

k

fk
†� ffk

�42�

and HU=−U�if
�nif,↑− 1

2 ��nif,↓− 1
2 �. Here, we have used the

same Nambu-spinor notation as in Sec. II with the exception
that d operators have been renamed f to be consistent with
the literature.29,32

B. DMFT with superconducting medium

The standard DMFT can be easily adapted to a supercon-
ducting bath using the Nambu formalism.29 We obtain the
self-consistency equation for a finite lattice with N sites ex-
pressed by a 2�2 matrix equation,

Gff�i
n� =
1

N
�
k


Gkk
0,ff−1

�i
n� − �ff�i
n��−1. �43�

Here, Gff�i
n�=−�0
�d�e−i
n��Tf���f†	 is the full Matsubara

Green’s function of the reference model, Gkk
0,ff�i
n� is the

Matsubara f Green’s function of the bare lattice model, and
�ff is the self-energy. Equation �43� can be solved by itera-
tion starting usually at a self-energy �ff�0. From Gff�i
n�,
the bare Green’s function G0

ff�i
n� of the reference model

can be calculated using Dyson’s equation G0
ff−1

=Gff−1
+�ff.

The reference model, which is now described by G0
ff and the

interaction part of the Hamiltonian can subsequently be
solved using the CTQMC method yielding Gff�i
n� for the
next DMFT iteration.

C. Hysteresis

In the DMFT, we can calculate the double occupancy

� f̃↑,i
† f̃↑,i f̃↓,i

† f̃↓,i	 of the f sites, which is together with the as-

sumption of a homogeneous system proportional to ��
�U .

Therefore, we expect a jump in the double occupancy to
appear at a critical value of U, if we have a first-order phase
transition as in the impurity problem.

Figure 17 shows our result for the double occupancy of
the f sites as a function of U. Depending on the initial choice
of the self-energy in the DMFT cycle, we obtain two differ-
ent solutions. If we start with the local Green’s function of
the bare lattice model, which corresponds to a self-energy
��0, we obtain the upper branch of the hysteresis. The
lower branch is obtained by taking the self-energy of the
solution in the strong-coupling phase at U=0.44 as starting
point for the DMFT cycle. The coexistence of two solutions
is a strong hint that a first-order phase transition occurs.

It should be noted that beginning at a value of U�0.34,
the upper branch of the hysteresis becomes unstable, i.e., the
inherent fluctuations of the Monte Carlo results suffice to
drop from the upper branch of the hysteresis to the lower
branch after a certain number of iterations. Increasing the
number of Monte Carlo measurements delays the drop to the
lower branch to a higher number of iterations. This behavior
can be understood in the following way: in the coexistence
region, the grand potential � of the upper and lower
branches of the hysteresis cross at a certain value of U. For
small values of U, � is minimal on the upper branch while
the lower branch is metastable and for larger values of U,
however, the stable solution is the lower branch.

In the strong-coupling phase and on the lower branch of
the hysteresis, the Monte Carlo results suddenly develop a
finite magnetization corresponding to a frozen spin. This is
due to divergent autocorrelation times in the Monte Carlo
simulation and is linked to the physical formation of a local
moment.

D. Local dynamical spin structure factor

To further classify the weak and strong-coupling phases,
we calculate the local dynamical spin structure factor S�
�
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0.2 0.25 0.3 0.35 0.4 0.45 0.5

〈f
† i,
↑f
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↑f

† i,
↓f

i,
↓〉

U

Double occupancy of the f sites

∆ = 2.0, β = 150., V = 0.5

DMFT start: Σ = 0
DMFT start: Σ = ΣU=0.44

FIG. 17. �Color online� Double occupancy of the f sites in the
BCS-PAM. In the proximity of the critical value of U, we observe
two different solutions of the DMFT self-consistency cycle. The
upper �thin/red� branch is generated, if we start the DMFT algo-
rithm with a self-energy ��0 while we obtain the solution shown
by the lower �thick/blue� branch if we take the self-energy of the
data point at U=0.44 as the starting point of the DMFT iterations.
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= 1
N�qS�q ,
�. The Lehmann representation for S�
� is given

by Eq. �22�, where in this case S+=S+
f ,i.

As in the impurity case, S�
� is a measure for the energy
needed to flip the spin on an f site. Figure 18 shows the
result for the local dynamical spin structure factor on both
branches of the hysteresis. The solution corresponding to the
upper branch of the hysteresis is linked to the weak-coupling
regime and shows a characteristic energy scale required for
flipping a spin.

The lower branch of the hysteresis represents the strong-
coupling phase and shows a clear local-moment peak in the
dynamical spin structure factor at 
=0. This behavior re-
flects exactly the single impurity physics discussed in the
previous section where we observed the Kondo effect in the
weak-coupling phase and the formation of a local moment in
the strong-coupling phase.

E. f density of states

In order to investigate the behavior of the f bands at the
phase boundary and to be able to compare with the single
impurity model, we calculate the density of states for the f
sites �ff directly from the local Green’s function G��� using
the stochastic analytic continuation method for different val-
ues of U. From Fig. 19, one can recognize the signature of

the impurity physics �see Sec. V D�, namely, the crossing of
Andreev bound states in the vicinity of the first-order transi-
tion at U�0.35. Note that we have only shown the level
crossing for the impurity model if � is changed but for vary-
ing U, the crossing of the Andreev bound states in the impu-
rity model �1� has been observed by Bauer et al.18 Clearly in
the lattice model, one expects the Andreev bound states to
acquire a dispersion relation which shows up as a finite
width in �ff.

F. Dispersion relation of Andreev bound states

We have seen in the previous sections that the local phys-
ics of the single impurity model can be carried over to the
lattice case within the DMFT approximation. Here, we con-
centrate on unique features of the lattice model �37�, namely,
the dispersion relation of the f bands as obtained by analyz-
ing the single-particle spectral function.

Using the local self-energy of the DMFT, �ff�i
n�, this
quantity is extracted from the Green’s functions

Gkk
ff �i
n� = 
Gkk

0,ff�i
n�−1 − �ff�i
n��−1 �44�

and

Gkk
cc �i
n� = Gkk

0,cc�i
n� − Gkk
0,cf�i
n�Gkk

ff �i
n�Gkk
0,fc�i
n� ,

�45�

where Gkk
0,cc�i
n�, Gkk

0,ff�i
n�, Gkk
0,cf�i
n�, and Gkk

0,fc�i
n� denote
the noninteracting Green’s functions for the corresponding
orbitals in the unit cell.

Using the stochastic analytic continuation, these Green’s
functions can be rotated to real frequencies, yielding, in prin-
ciple, the spectral function A�k ,
�. For each k point and real
frequency this quantity is a 4�4 matrix since we have a 2
�2 Nambu spectral function for each combination of f and c
orbitals. Our analysis of the spectral function is based on the
basis independent quantity A�k ,
�=Tr A�k ,
�.

Figure 20 plots this quantity in the singlet phase. The
overall structure of the spectral function is similar to the
structure observed for the bare BCS-PAM characterized by
the four bands,
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FIG. 18. �Color online� Dynamical spin structure factor for the
upper and the lower branches of the hysteresis in Fig. 17. Clearly,
the upper branch of the hysteresis corresponds to a singlet solution
while the lower branch shows a local moment.
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FIG. 19. �Color online� Density of states for the f electrons as a
function of U for the parameters V=0.5, �=2, 	=� f =0, and �
=100.
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FIG. 20. �Color online� Trace of the spectral function A�k ,
� at
�=100 in the singlet regime. The parameters of the simulation were
given by U=0.125, V=0.5, �=2, and 	=� f =0.
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E�,��k� = � �V2 + E2�k�/2 � E�k��V2 + E2�k�/4,

�46�

where E�k�=��2�k�+�2. The bands with dominant c charac-
ter, E�

c �k��E�,+�k�, at high frequencies are well separated
from the bands of dominant f character at low frequencies,
E�

f �k�=E�,−�k�. For the considered bare parameters, V is the
smallest scale and sets the magnitude of the dispersion rela-
tion of the f band. In particular, expanding in V gives

E�
f �k� = �

V2

E�k�
+ O� V4

E�k�3� . �47�

Starting from the point of view of the impurity model, which
as seen above accounts very well for overall form of the
k-integrated f-spectral function, E�

f �k� may be perceived as
the dispersion relation of the Andreev bound states.

The singlet phase is continuously connected to the U=0
point. Starting from this limit, we can account for the Hub-
bard U within a slave-boson approximation42 which will
renormalize the hybridization matrix element to lower val-
ues. Owing to Eq. �47� this suppresses the dispersion relation
of the f electrons. This aspect is clearly observed in Fig. 21.

In the doublet phase, U�Uc, the paramagnetic slave-
boson mean-field approach fails. In this state, the f spin is
frozen and in the DMFT cycle we have imposed spin-
symmetric baths thereby inhibiting magnetic ordering. The
QMC data of Fig. 22 points to a very incoherent f spectral
function. It is therefore tempting to model this state in terms
of spin disorder: the spin of the f electrons on each site is
static and points in a random direction. To provide some
support for this picture we stay in the dynamical mean-field
framework but consider a mean-field decomposition of the
Hubbard term in the action of the impurity problem,

U�ñf ,↑ −
1

2
��ñ↓ −

1

2
� → −

Umz

2
�ñf ,↑ − ñf ,↓� . �48�

This mean-field approximation, accounts for the local-
moment formation with z component of spin mz. The corre-
sponding mean-field action of the impurity model now reads
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FIG. 21. �Color online� Trace of the spectral function A�k ,
� at �=100 in the singlet regime for increasing interaction U. The width of
the f bands clearly decreases and the dispersion becomes weaker. The parameters of the simulations were given by V=0.5, �=2, and 	
=� f =0.
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FIG. 22. �Color online� Trace of the spectral function A�k ,
� at
�=100 in the doublet regime for different values of U. Here, we
only show the f bands. The parameters of the simulation were given
by V=0.5, �=2, and 	=� f =0.

WEAK-COUPLING CONTINUOUS-TIME QUANTUM MONTE… PHYSICAL REVIEW B 81, 024509 �2010�

024509-13



SMF = �
0

�

d��
0

�

d��f̃†���G−1�� − ���f̃����

−
Umz

2
�

0

�

d�f̃†���f̃��� , �49�

where f̃†= � f̃↑
† , f̃↓� and G��−��� corresponds to the bath

Green’s function. To account for disorder, the z component
of the f spin is sampled from the box distribution mz�

−Mz ,Mz�. Averaging over disorder at each iteration in the
DMFT cycle yields the spectral function shown in Fig. 23.
As apparent, the disorder average generates a finite lifetime.

VII. CONCLUSION

We have shown that the weak-coupling CTQMC algo-
rithm is an extremely powerful unbiased tool to compute
thermodynamic as well as dynamical quantities of impurity
models in superconducting environments. The method can
cope very well with a complex phase of the superconducting
order parameter thereby allowing for the calculation of the
Josephson current. Our detailed results for the impurity prob-
lem confirm the picture of a first-order phase transition be-
tween a single state and doublet state. It is accompanied by a
� phase shift in the Josephson current.

Within DMFT, the physics of the BCS-PAM is mapped
onto the single impurity Anderson model supplemented by a
self-consistency loop. We have shown that within this ap-
proximation, the physics of the impurity model can be car-
ried over to the lattice. In particular, at fixed superconducting
order parameter � the first-order transition between a singlet
and local-moment state as a function of growing values of U
shows up in a hysteresis behavior of the double occupancy.
Furthermore, the low-energy features of the local f spectral
function are reminiscent of the Andreev bound states with
vanishing excitation energy �i.e., a crossing point� at the
critical coupling. Within the DMFT approximation, we can
look into the single-particle spectral function. In the singlet
phase, the low-energy features can be interpreted in terms of
a dispersion relation of Andreev bound states. This state is

continuously linked to the U=0 limit. In the doublet state or
local-moment regime, the low-energy features of the spectral
functions are incoherent. We propose to understand this in
terms of models of disorder. In particular, in this state, the
spin dynamics of the f electron is frozen and since we are
considering paramagnetic states it points in a random differ-
ent direction in each unit cell. A simple model of disorder
following this picture accounts very well for the observed
incoherent spectral function.
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APPENDIX: PROOF OF THE DETERMINANT IDENTITY

In this section a general determinant identity is proven,
which can be used to derive Wick’s theorem for contribu-
tions of a configuration Cn to physical observables. Let us
define the vectors ui ,vi�Cm and the numbers �ij �C.
Further, let A�Cm�m be a matrix of rank m. We define
the nonsingular matrices Mn�C�m+n���m+n� and Aij
�C�m+1���m+1� by

Mn =�
A u1 ¯ un

v1
T �11 ¯ �1n

] ] � ]

vn
T �n1 ¯ �nn

, Aij = �A uj

vi
T �ij

� . �A1�

With these definitions, the following determinant identity
holds

det Mn�det A�n−1 = det�det A11 ¯ det A1n

] � ]

det An1 ¯ det Ann
 . �A2�

The identity can be proven by induction in n. It is trivial
for n=1, so we have to start with n=2, where we have to
show

det M2

det A
=

det A11

det A

det A22

det A
−

det A12

det A

det A21

det A
. �A3�

For the following calculations, we introduce several vectors:

uij
1 = � uj

�ij − 1
�, vij

2 = �vi

0
�, u2 = v1 = �0

1
� � Cm+1,

�A4�
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FIG. 23. �Color online� Trace of the spectral function A�k ,
� as
obtained from using Eq. �49� for the impurity action. The z compo-
nent of the local moment is sampled from the box distribution mz

� 
−Mz ,Mz�. The parameters used for this plot were given by V
=0.5, U=0.5, �=2, and Mz=0.0375. Here, the calculations are car-
ried out on the real time axis such that no analytical continuation is
required.
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uM
1 = � u2

�12

�22 − 1
, vM

2 = � v2

�21

0
, uM

2 = vM
1 = �0

1
� � Cm+2.

�A5�

Let us define the expanded matrix Cex of a square matrix C
as the matrix C expanded by one row and one column con-
taining a unit vector,

Cex = �C 0

0T 1
� . �A6�

As a last definition, we introduce the abbreviation bij
=vi

TA−1uj. Using these notations, we can write the matrices
Aij as

Aij = Aex + uij
1v1T

+ u2vij
2T

. �A7�

To calculate the determinant det Aij, we use the matrix de-
terminant lemma det�A+uvT�= �1+vTA−1u�det A, yielding

det Aij

det Aex
= 
1 + vij

2T
�Aex + uij

1v1T
�−1u2��1 + v1T

Aex
−1uij

1 � .

�A8�

The inverse matrix of �Aex+uij
1v1T

� can be obtained from the
Sherman-Morrison formula and a tedious calculation making
use of the special form of the vectors and matrices gives the
result

det Aij

det A
= �ij − bij . �A9�

From this, the right-hand side of Eq. �A3� can be easily ob-
tained. For the left-hand side, we have to perform an analo-
gous calculation using the decomposition of the matrix M2,

M2 = A11ex
+ uM

1 vM
1T

+ uM
2 vM

2T
. �A10�

Again, we apply the matrix determinant lemma two times
and insert the Sherman-Morrison formula to calculate the

inverse matrix of �A11ex
+uM

1 vM
1T

�. Simplifying the result as
far as possible, we finally arrive at

det M2

det A
= ��11 − b11���22 − b22� − ��12 − b12���21 − b21� .

�A11�

If we compare Eqs. �A9�, it is clear that Eq. �A3� holds.
We now assume that for a certain value n�N Eq. �A2�

holds. For n+1, we can cast the matrix Mn+1 in a form,
where we can make use of Eq. �A2� holding for n,

Mn+1 =�
Ã ũ2 ¯ ũn+1

ṽ2
T �2,2 ¯ �2,n+1

] ] � ]

ṽn
T �n,2 ¯ �n,n+1

ṽn+1
T �n+1,2 ¯ �n+1,n+1

 , �A12�

where we have introduced the new matrix Ã and the vectors
ũi and ũj with

Ã = �A u1

v1
T �11

�, ũi = � ui

�1i
�, ṽi = � vi

�i1
� . �A13�

Further, we need the matrices Ãij defined analogously to Eq.
�A1�,

Ãij = � Ã ũj

ṽi
T �ij

� = �A u1 uj

v1
T �11 �1j

vi
T �i1 �ij

 . �A14�

With these definitions, and with the abbreviations aij

=det Aij and ãij =det Ãij, we are now able to apply Eq. �A2�
holding for n,

det Mn+1�det Ã��n−1� = det� ã2,2 ¯ ã2,n+1

] � ]

ãn+1,2 ¯ ãn+1,n+1
 .

�A15�

For ãij, we make use of Eq. �A2� with n=2, which we have
proved above

ãij =
1

det A
�a11aij − ai1a1j� . �A16�

Inserting this result in Eq. �A15� yields a determinant with
entries of the form a11aij −ai1a1j. We make use of the multi-
linearity of the determinant to decompose this expression
and we obtain a sum of determinants with prefactors of the
form aij. Eliminating zero contributions, the resulting expres-
sion corresponds precisely to the Laplace expansion of a
larger determinant and we finally obtain

det Mn+1 det An = det�
a1,1 a1,2 ¯ a1,n+1

a2,1 a2,2 ¯ a2,n+1

] ] � ]

an+1,1 an+1,2 ¯ an+1,n+1

 .

�A17�

This is the identity 
Eq. �A2�� for n+1. Hence we have de-
rived the determinant identity for n+1 using only the identity
for n and n=2. By induction, the identity 
Eq. �A2�� there-
fore holds for every n�N, as it is trivial for n=1.

WEAK-COUPLING CONTINUOUS-TIME QUANTUM MONTE… PHYSICAL REVIEW B 81, 024509 �2010�

024509-15



*dluitz@physik.uni-wuerzburg.de
1 H. Shiba, Prog. Theor. Phys. 40, 435 �1968�.
2 A. Sakurai, Prog. Theor. Phys. 44, 1472 �1970�.
3 B. D. Josephson, Phys. Lett. 1, 251 �1962�.
4 I. O. Kulik, Sov. Phys. JETP 22, 841 �1966�.
5 L. I. Galzman and K. A. Matveev, JETP Lett. 49, 659 �1989�.
6 B. I. Spivak and S. A. Kivelson, Phys. Rev. B 43, 3740 �1991�.
7 A. Eichler, R. Deblock, M. Weiss, C. Karrasch, V. Meden, C.

Schönenberger, and H. Bouchiat, Phys. Rev. B 79, 161407
�2009�.

8 J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, and
M. Monthioux, Nat. Nanotechnol. 1, 53 �2006�.

9 H. I. Jørgensen, T. Novotný, K. Grove-Rasmussen, K. Flensberg,
and P. E. Lindelof, Nano Lett. 7, 2441 �2007�.

10 J. A. van Dam, Y. V. Nazarov, E. P. A. M. Bakkers, S. D. France-
schi, and L. P. Kouwenhoven, Nature �London� 442, 667
�2006�.

11 K. Grove-Rasmussen, H. I. Jørgensen, and P. E. Lindelof, New J.
Phys. 9, 124 �2007�.

12 H. I. Jørgensen, K. Grove-Rasmussen, T. Novotný, K. Flensberg,
and P. E. Lindelof, Phys. Rev. Lett. 96, 207003 �2006�.

13 T. Sand-Jespersen, J. Paaske, B. M. Andersen, K. Grove-
Rasmussen, H. I. Jørgensen, M. Aagesen, C. B. Sørensen, P. E.
Lindelof, K. Flensberg, and J. Nygård, Phys. Rev. Lett. 99,
126603 �2007�.

14 A. Eichler, M. Weiss, S. Oberholzer, C. Schönenberger, A. L.
Yeyati, J. C. Cuevas, and A. Martín-Rodero, Phys. Rev. Lett. 99,
126602 �2007�.

15 M. R. Buitelaar, T. Nussbaumer, and C. Schönenberger, Phys.
Rev. Lett. 89, 256801 �2002�.

16 M.-S. Choi, M. Lee, K. Kang, and W. Belzig, Phys. Rev. B 70,
020502�R� �2004�.

17 A. Oguri, Y. Tanaka, and A. C. Hewson, J. Phys. Soc. Jpn. 73,
2494 �2004�.

18 J. Bauer, A. Oguri, and A. C. Hewson, J. Phys.: Condens. Matter
19, 486211 �2007�.

19 T. Hecht, A. Weichselbaum, J. von Delft, and R. Bulla, J. Phys.:
Condens. Matter 20, 275213 �2008�.

20 F. Siano and R. Egger, Phys. Rev. Lett. 93, 047002 �2004�.
21 F. Siano and R. Egger, Phys. Rev. Lett. 94, 039902�E� �2005�.
22 F. Siano and R. Egger, Phys. Rev. Lett. 94, 229702 �2005�.
23 C. Karrasch, A. Oguri, and V. Meden, Phys. Rev. B 77, 024517

�2008�.
24 A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B

72, 035122 �2005�.

25 A. A. Clerk and V. Ambegaokar, Phys. Rev. B 61, 9109 �2000�.
26 A. V. Rozhkov and D. P. Arovas, Phys. Rev. B 62, 6687 �2000�.
27 E. Vecino, A. Martín-Rodero, and A. Levy Yeyati, Phys. Rev. B

68, 035105 �2003�.
28 T. Meng, S. Florens, and P. Simon, Phys. Rev. B 79, 224521

�2009�.
29 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 �1996�.
30 M. I. Salkola, A. V. Balatsky, and J. R. Schrieffer, Phys. Rev. B

55, 12648 �1997�.
31 A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78,

373 �2006�.
32 A. C. Hewson and D. Edwards, The Kondo Problem to Heavy

Fermions, Cambridge Studies in Magnetism �Cambridge Uni-
versity Press, Cambridge, London, 2003�.

33 F. F. Assaad and T. C. Lang, Phys. Rev. B 76, 035116 �2007�.
34 A. V. Rozhkov and D. P. Arovas, Phys. Rev. Lett. 82, 2788

�1999�.
35 C. Benjamin, T. Jonckheere, A. Zazunov, and T. Martin, Eur.

Phys. J. B 57, 279 �2007�.
36 A. W. Sandvik, Phys. Rev. B 57, 10287 �1998�.
37 K. S. D. Beach, arXiv:cond-mat/0403055 �unpublished�.
38 The dynamical charge structure factor itself can, in principle, be

calculated from the CTQMC result for the charge correlation
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